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S1. Theoretical analysis
The heterogeneous mean-field theory [1] was adopted to derive the mean-field equations for the uncorrelated double-layer

network. Let PA(kA) [PB(kB)] be the degree distribution of communication layer A (contact layer B), and the average
degrees of A and B are ⟨kA⟩ =

∑
kA

kAPA(kA) and ⟨kB⟩ =
∑

kB
kBPB(kB), respectively. Meanwhile, we assume that

inner-layer links and inter-layer links have no degree correlations. The variables of sAkA
(t), ρAkA

(t) and rAkA
(t) are used to denote

the densities of the susceptible, informed, and recovered nodes with degree kA in layer A at time t, respectively. Thereinto,
ρAkA

(t) =
∑

m ρAkA
(m, t), and ρAkA

(m, t) is the density of IA nodes with degree kA who has received m pieces of information
till time t. Similarly, sBkB

(t), ρBkB
(t), rBkB

(t) and vBkB
(t) are the densities of the susceptible, infected, recovered and vaccinated

nodes with degree kB in layer B at time t, respectively.

A. Mean-field rate equations
The mean-field rate equation of the information spreading in layer A is

dsAkA
(t)

dt
= −sAkA

(t)[ΨA
SA,kA

(t) +
∑
kB

PB(kB)Ψ
B
SB ,kB

(t)], (S1)

For m = 1, the rate equation of ρAkA
(1, t) is given as

dρAkA
(1, t)

dt
= sAkA

(t)

kA∑
n=1

πA
SA,kA

(n)Bn,1(βA) + sAkA
(t)

∑
kB

PB(kB)Ψ
B
SB ,kB

(t)− ρAkA
(1, t)ΨA

IA,kA
(t)− µρAkA

(1, t), (S2)

When m > 1, the rate equation of ρAkA
(m, t) is described as

dρAkA
(m, t)

dt
= sAkA

(t)

kA∑
n=m

πA
SA,kA

(n)Bn,m(βA)+
m−1∑
q=1

ρAkA
(q, t)

kA∑
n=m−q

πA
IA,kA

(n)Bn,m−q(βA)−ρAkA
(m, t)ΨA

IA,kA
(t)−µρAkA

(m, t),

(S3)

drAkA
(t)

dt
= µ

∑
m

ρAkA
(m, t). (S4)

The mean-field rate equation of the epidemic spreading in layer B is

dsBkB
(t)

dt
= −sBkB

(t)ΨB
SB ,kB

(t)−
∑
kA

χA
SA,kA

(t)− sBkB
(t)

∑
kA

χA
IA,kA

(t), (S5)

dρBkB
(t)

dt
= sBkB

(t)ΨB
SB ,kB

(t)− µρBkB
(t), (S6)

rBkB
(t)

dt
= µρBkB

(t), (S7)
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dvBkB
(t)

dt
=

∑
kA

χA
SA,kA

(t) + sBkB
(t)

∑
kA

χA
IA,kA

(t). (S8)

From Eqs. (S1)-(S8), the density associated with each distinct state in layer A or B is given by

xH(t) =

kH ,max∑
kH=1

PH(kH)xH
kH

(t),

where H ∈ {A,B}, x ∈ {s, ρ, r, v}, and kH,min (kH,max) denotes the smallest (largest) degree of layer H . Specially, the
density of IA node with degree kA in layer A is ρAkA

(t) =
∑

m ρAkA
(m, t). The final densities of the whole system can be

obtained by taking the limit t → ∞.

B. Linear analysis of information threshold in layer A
On an uncorrelated nonoverlapping double-layer network, at the outset of the spreading dynamics, the whole system can be

regarded as consisting of two coupled SI-epidemic subsystems [2] with the time evolution described by equations (S2),(S3) and
(S6). As t → 0, one has sAkA

(t) ≈ 1 and sBkB
(t) ≈ 1, which reduce equations (S2),(S3) and (S6) as

dρA
kA

(1,t)

dt = βAkAΘ
A
SA

(t) + βB⟨kB⟩ΘB
SB

(t)− µρAkA
(1, t),

dρA
kA

(m,t)

dt = 0 (m > 1),
dρB

kB
(t)

dt = βBkBΘ
B
SB

(t)− µρBkB
(t).

(S9)

The above equations can be simplified as matrix form:

dρ⃗

dt
=

Cρ⃗

µ
− ρ⃗, (S10)

where

ρ⃗ ≡ (ρAkA=1(1), . . . , ρ
A
kA,max

(1), ρBkB=1, . . . , ρ
B
kB,max

)T . (S11)

The matrix C is written as a block matrix:

C =

(
CA DB

0 CB

)
, (S12)

whose elements are given as

CA
kA,k′

A
= [βAkA(k

′
A − 1)PA(k

′
A)]/⟨kA⟩,

CB
kB ,k′

B
= [βBkB(k

′
B − 1)PB(k

′
B)]/⟨kB⟩,

DB
kB ,k′

B
= βB(k

′
B − 1)PB(k

′
B).

In general, information spreading in layer A can be facilitated by the outbreak of the epidemic in layer B, since an infected node
in layer B instantaneously makes its counterpart node in layer A “infected” by the information immediately and certainly. That
is to say, the number of the informed nodes in layer A is larger than the number of the infected nodes in layer B. If the maximum
eigenvalue ΛC of matrix C/µ is greater than 1, an outbreak of the information will occur absolutely [3]. We then have

ΛC = max{ΛA,ΛB}, (S13)

where max {} denotes the greater of the two, and

ΛA = βA(⟨kA2⟩ − ⟨kA⟩)/(µ⟨kA⟩),
ΛB = βB(⟨kB2⟩ − ⟨kB⟩)/(µ⟨kB⟩),
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are the maximum eigenvalues of matrices CA and CB [4], respectively. Thus, the outbreak threshold for the spreading in layer
A is given as

βAc =

{
βAu, for βB ≤ βBu;
0, for βB > βBu.

(S14)

Here βAu ≡ µ⟨kA⟩/(⟨kA2⟩− ⟨kA⟩) and βBu ≡ µ⟨kB⟩/(⟨kB2⟩− ⟨kB⟩) denote the outbreak threshold of information spreading
in layer A when it is isolated from layer B, and the outbreak threshold of epidemic spreading in layer B when the coupling
between the two layers is absent, respectively.

C. Competing percolation theory for epidemic threshold in layer B

For βA < βAu, Eq. (S14) shows that the information cannot break out in layer A if layer A and layer B are isolated. When
the two spreading dynamics are interacting, near the epidemic threshold, the spread of epidemic in layer B can only lead to a
few of counterpart nodes in layer A “infected” with the information, and thus these informed nodes in layer A have negligible
effect on the epidemic dynamics in layer B since βA < βAu. The above explanation indicates that βBc ≈ βBu when βA < βAu.
However, for βA > βAu, the information outbreak in layer A which makes many counterpart nodes in layer B vaccinated, thus
hinders the spread of epidemic in layer B. Once a node is in the vaccination state, it will no longer be infected. Usually, we
can regard this kind of vaccination as a type of “disease,” and every node in layer B can be in one of the two states: infected
or vaccinated. Epidemic spreading and vaccination diffusion (derived by information diffusion) can thus be viewed as a pair
of competing “diseases” spreading in layer B [5]. As pointed out by Karrer and Newman [5], in the limit of large network
size N and the two competing diseases with different growth rates, then they can be treated as if they were in fact spreading
non-concurrently, one after the other.

To clarify the interplay between epidemic and vaccination spreading, we should determine which one is the faster “dis-
ease”. At the early stage, the average number of infected nodes in the isolated layer B grows exponentially as Ne(t) =
n0(Re)

t = n0e
t lnRe , where Re = βB/βBu is the basic reproductive number for the disease in the isolated layer B [2],

and n0 denotes the number of initially infected nodes. Similarly, for information spreading in the isolated layer A, the av-
erage number of informed nodes at the early time is Ni(t) = n1(Ri)

t = n1e
t ln(Ri) = N

∑
m ρA(m, t), where n0 = n1,

ρA(m, t) =
∑

kA
PA(kA)ρ

A
kA

(m, t) denotes the density of the nodes who have received m pieces of information till time step t,
and Ri = βA/βAu is the reproductive number for information spreading in the isolated layer A. So the number of vaccination
nodes is NV (t) = N

∑
m ρA(m, t)ξm, which is larger than ξ1n0e

t ln(Ri) since ξm > ξ1, and which is smaller than n0e
t ln(Ri)

since ξm < 1. As a result, at the early stage, we can view that Nv grows exponentially and the growth satisfies NV ∼ O(Ni).
Since the number of vaccination and infection both grow in an exponentially way, we can obtain the ratio of their growth rates

as

θ =
Ri

Re
=

βAβBu

βBβAu
. (S15)

When θ < 1, i.e., βBβAu > βAβBu, the disease process grows faster than the vaccination process. In this case, the effect
of vaccination is insignificant and can be neglected. However, when θ > 1, the information process spreads faster than the
epidemic process, which is in accord with realistic situations since many on-line social networks and mass media can promote
the spreading of information. Given that vaccination and epidemic can be treated successively and separately, by letting βB = 0
and obtaining the final density of vaccination vB(∞)|βB=0 from Eq. (S8), the threshold of epidemic outbreak is given as [6]

βBc =
µ⟨kB⟩

[1− vB(∞)|βB=0](⟨kB2⟩ − ⟨kB⟩)
. (S16)

S2. Simulation results
We first describe the simulation processes of the two spreading dynamics in double-layer networks, and then present results

for RR-ER double-layer and SF-SF double-layer networks. Lastly, we study the effect of different relative cost of vaccination
and treatment on total social cost in SF-ER double layer networks.

A. Simulation process
To initiate an epidemic spreading process, a node in layer B is randomly infected and its counterpart node in layer A is thus in

the informed state, too. The updating process is performed with parallel dynamics, which is widely used in statistical physics [7].
At each time step, we first calculate the informed (infected) probability πA = 1 − (1 − βA)

nA
I [πB = 1 − (1 − βB)

nB
I ] that
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each susceptible or informed node in layer A may be informed or informed again by its informed neighbors and each susceptible
node in layer B infected by its infected neighbors, where nA

I (nB
I ) is the number of its informed (infected) neighboring nodes.

According to the dynamical mechanism, once node Ai is in the susceptible state, its counterpart node Bi will be also in the
susceptible state. Besides, when a node in layer A is in the informed state, its counterpart node may be in the susceptible state.
Considering the asymmetric coupling between the two layers in these two cases, both the information-transmission and disease-
transmission events can hardly occur at the same time. Thus, with probability πA/(πA + πB), node Ai have a probability
πA to get the information from its informed neighbors in layer A. If node Ai is informed, its counterpart node Bi will turn
into the vaccination state with probability ξm, where m is total times of information the node has received. With probability
πB/(πA +πB), node Bi have a probability πB to get the infection from its infected neighbors in layer B, and then node Ai also
get the information about the disease.

In the other case that node Bi and its corresponding node Ai are in the susceptible state and the informed (or refractory) state
respectively, only the disease-transmission event can occur at the time step. Thus, node Bi will be infected with probability πB .

After renewing the states of susceptible nodes, each informed (infected) node can enter the recovering phase with probability
µ = 0.5. The spreading dynamics terminates when all informed (or infected) nodes in both layers are recovered, and the
final densities rA, rB , and vB are then recorded. The simulations are implemented using 30 different double-layer network
realizations and each realization is repeated 2 × 103 times. The network size of NA = NB = 1 × 104 and average degrees
⟨kA⟩ = ⟨kB⟩ = 8 are used for all subsequent numerical results, unless otherwise specified.

B. RR-ER double-layer network
In RR-ER double-layer network, we also investigate the impacts of social reinforcement effect on the two types of spreading

dynamics. At first, We use the standard configuration model [9] to generate regular random network (RR) for the communication
subnetwork (layer A). The contact subnetwork in layer B is of the Erdős and Rényi (ER) type [8]. We use the notation RR-ER
to denote the double-layer network. The sizes of both layers are set to be NA = NB = 1 × 104 and their average degrees are
⟨kA⟩ = ⟨kB⟩ = 8. And we set ξ1 = 0.05, µ = 0.5 in the following simulations. As shown in Figs. S1, S2, S3 and S4, we obtain
the similar results of social reinforcement effect on the two types of spreading dynamics as in SF-ER double network.

C. SF-SF double-layer network
In SF-SF double-layer network, we also investigate the impacts of social reinforcement effect on the two types of spreading

dynamics. At first, We use the standard configuration model to generate networks with power-law degree distributions [9–11]
for the communication subnetwork (layer A), with PA(kA) = ζk−γA

A , ζ = 1/
∑kmax

kmin
k−γA

A , γ = 3.0 and the maximum degree
kmax∼N1/(γA−1). The contact subnetwork in layer B is generated with the same methods as layer A. We use the notation
SF-SF to denote the double-layer network. The sizes of both layers are set to be NA = NB = 1× 104 and their average degrees
are ⟨kA⟩ = ⟨kB⟩ = 8. And we set ξ1 = 0.05, µ = 0.5 in the following simulations. As shown in Figs. S5, S6, S7 and S8, we
obtain the similar results of social reinforcement effect on the two types of spreading dynamics as in SF-ER double network.

D. Different relative cost of vaccination and treatment
We study the different relative costs of vaccination and treatment to the effect of optimal control in SF-ER double-layer

networks. we have assumed that the cost of treatment is twice and five times of vaccination cost, as shown in Fig. S9 and
Fig. S10, respectively. We find when the information spreads faster than the disease, there still exists an optimal α yielding
the least social cost. When the information about disease spreads slowly, increasing α can result in less social cost. These
results have shown that the different relative costs of vaccination and treatment do not influence previous conclusion qualitatively.
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FIG. S1: The impacts of social reinforcement effect on the outbreak threshold. For RR-ER double-layer network, the reference information
threshold λAe and the reference epidemic threshold λBe as the function of α are obtained by numerical simulation. Owing to the difficulty of
determining the threshold values from numerical predictions, we respectively take the critical density where the final recovery density in layer
A (B) are 0.01 (gray circles), 0.02 (oliver downtriangles) and 0.05(blue squares) as the reference threshold values. The red solid line is the
corresponding theoretical prediction from Eqs. (S14) and (S16). (a) In communication layer A, the reference information threshold λAe as a
function of α when λB is set as 0.5; (b) In physical contact layer B, the reference epidemic threshold λBe as a function of α at λA = 0.5.
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FIG. S2: The impacts of social reinforcement effect and information transmission rate on final states. For RR-ER double-layer network,
subfigures (a), (b), and (c) show the values of rA, rB and vB as a function of α for different values of λB (0.3, 0.5, and 0.8), with the analytical
predictions corresponding to the black solid, red dashed, and blue doted lines, respectively. When λA is set as 0.5. Subfigures (d), (e), and (f)
illustrate the values of rA, rB and vB versus the parameter λA for different values of α (0, 0.2, and 1.0), corresponding to the black solid, red
dashed, and blue doted lines respectively. When λB is fixed at 0.5.



7

FIG. S3: A systematic investigation of social reinforcement effect and disease transmission rate impact on final states. For RR-ER
double-layer network, (a) recovered density rA, (b) recovered density rB , (c) the vaccination density vB versus α and βB for λA = 0.5.
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FIG. S4: Impacts of social reinforcement effect and information transmission rate on the social cost and the optimal control. For RR-ER
double-layer network, the social cost C versus the parameters of α and λA in subfigures (a) and (b), respectively. Here the value of λB is fixed
at 0.3. The optimal αo versus βA and optimal λAo versus α in subfigures (c) and (d), respectively. In (a), we select three different values of
λA(0.2, 0.3, and 0.5), corresponding to the black circle solid, red triangle solid, and blue square solid lines, respectively. In (b), different values
of α (0.25, 0.5 and 1.0) corresponds to the black circle solid, red triangle solid, and blue square solid lines, respectively. (c) the αo versus λA

and (d) the λAo versus α under different λB (0.2, 0.3 and 0.5) corresponds to the black circle solid, red triangle solid, and blue square solid
lines, respectively.
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FIG. S5: The impacts of social reinforcement effect on the outbreak threshold. For SF-SF double-layer network, the reference information
threshold λAe and the reference epidemic threshold λBe as the function of α are obtained by numerical simulation. Owing to the difficulty
of determining the threshold values from numerical predictions, we respectively take the critical density where the final recovery density in
layer A (B) are 0.01 (black down triangles), and 0.05(red circles) as the reference threshold values. The blue solid line is the corresponding
theoretical prediction from Eqs. (S14) and (S16). (a) In communication layer A, the reference information threshold λAe as a function of α
when λB is set as 0.5; (b) In physical contact layer B, the reference epidemic threshold λBe as a function of α at λA = 0.5.
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FIG. S6: The impacts of social reinforcement effect and information transmission rate on final states. For SF-SF double-layer network,
subfigures (a), (b), and (c) show the values of rA, rB and vB as a function of α for different values of λB (0.3, 0.5, and 0.8), with the analytical
predictions corresponding to the black solid, red dashed, and blue doted lines, respectively. When λA is set as 0.5. Subfigures (d), (e), and (f)
illustrate the values of rA, rB and vB versus the parameter λA for different values of α (0.0, 0.25, and 1.0), corresponding to the black solid,
red dashed, and blue doted lines respectively. When λB is fixed at 0.5.
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FIG. S7: A systematic investigation of social reinforcement effect and disease transmission rate impact on final states. For SF-SF
double-layer network, (a) recovered density rA, (b) recovered density rB , (c) the vaccination density vB versus α and βB for λA = 0.5.
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FIG. S8: Impacts of social reinforcement effect and information transmission rate on the social cost and the optimal control. For SF-SF
double-layer network, the social cost C versus the parameters of α and λA in subfigures (a) and (b), respectively. Here the value of λB is
fixed at 0.5. In (a), we select three different values of λA(0.3, 0.5, and 0.8), corresponding to the black circle solid, red triangle solid, and blue
square solid lines, respectively. In (b), different values of α (0.0, 0.5 and 1.0) corresponds to the black circle solid, red triangle solid, and blue
square solid lines, respectively.
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FIG. S9: Impacts of social reinforcement effect and information transmission rate on the social cost. For SF-ER double-layer network,
the social cost C versus the parameters of α and λA in subfigures (a) and (b), respectively. Here the value of λB is fixed at 0.3. cR/cV = 2.
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FIG. S10: Impacts of social reinforcement effect and information transmission rate on the social cost. For SF-ER double-layer network,
the social cost C versus the parameters of α and λA in subfigures (a) and (b), respectively. Here the value of λB is fixed at 0.3. cR/cV = 5.


